Least Squares Policy Evaluation Algorithms with Linear Function Approximation1

نویسندگان

  • A. Nedić
  • D. P. Bertsekas
چکیده

We consider policy evaluation algorithms within the context of infinite-horizon dynamic programming problems with discounted cost. We focus on discrete-time dynamic systems with a large number of states, and we discuss two methods, which use simulation, temporal differences, and linear cost function approximation. The first method is a new gradient-like algorithm involving least-squares subproblems and a diminishing stepsize, which is based on the λ-policy iteration method of Bertsekas and Ioffe. The second method is the LSTD(λ) algorithm recently proposed by Boyan, which for λ = 0 coincides with the linear least-squares temporal-difference algorithm of Bradtke and Barto. At present, there is only a convergence result by Bradtke and Barto for the LSTD(0) algorithm. Here, we strengthen this result by showing the convergence of LSTD(λ), with probability 1, for every λ ∈ [0, 1]. 1 Research supported by NSF under Grant ACI-9873339. 2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA 02139. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Least Squares Policy Evaluation Algorithms with Linear Function Approximation

We consider policy evaluation algorithms within the context of infinite-horizon dynamic programming problems with discounted cost. We focus on discrete-time dynamic systems with a large number of states, and we discuss two methods, which use simulation, temporal differences, and linear cost function approximation. The first method is a new gradient-like algorithm involving least-squares subprob...

متن کامل

MapReduce for Parallel Reinforcement Learning

We investigate the parallelization of reinforcement learning algorithms using MapReduce, a popular parallel computing framework. We present parallel versions of several dynamic programming algorithms, including policy evaluation, policy iteration, and off-policy updates. Furthermore, we design parallel reinforcement learning algorithms to deal with large scale problems using linear function app...

متن کامل

Improved Temporal Difference Methods with Linear Function Approximation1

We consider temporal difference algorithms within the context of infinite-horizon finite-state dynamic programming problems with discounted cost, and linear cost function approximation. We show, under standard assumptions, that a least squares-based temporal difference method, proposed by Nedić and Bertsekas [NeB03], converges with a stepsize equal to 1. To our knowledge, this is the first iter...

متن کامل

Kernel Least-Squares Temporal Difference Learning

Kernel methods have attracted many research interests recently since by utilizing Mercer kernels, non-linear and non-parametric versions of conventional supervised or unsupervised learning algorithms can be implemented and usually better generalization abilities can be obtained. However, kernel methods in reinforcement learning have not been popularly studied in the literature. In this paper, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002